A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

نویسندگان

  • Fei-Lu Siaw
  • Kok-Keong Chong
چکیده

This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Maximum Power Point Tracking in Solar Array Systems Using Fuzzy Controllers

In recent year's renewable energy sources have become a useful alternative for the power generation. The power of photovoltaic is nonlinear function of its voltage and current. It is necessary to maintain the operation point of photovoltaic in order to get the maximum power point (MPP) in various solar intensity. Fuzzy logic controller has advantage in handling non-linear system. Maximum power ...

متن کامل

Optimal Reconfiguration of Solar Photovoltaic Arrays Using a Fast Parallelized Particle Swarm Optimization in Confront of Partial Shading

Partial shading reduces the power output of solar modules, generates several peak points in P-V and I-V curves and shortens the expected life cycle of inverters and solar panels. Electrical array reconfiguration of PV arrays that is based on changing the electrical connections with switching devices, can be used as a practical solution to prevent such problems. Valuable studies have been perfor...

متن کامل

Maximum Power Point Tracking Using Sliding Mode Control for Photovoltaic Array

In this paper, a robust Maximum Power Point Tracking (MPPT) for PV array has been proposed using sliding mode control by defining a new formulation for sliding surface which is based on increment conductance (INC) method. The stability and robustness of the proposed controller are investigated to load variations and environment changes. Three different types of DC-DC converter are used in Maxim...

متن کامل

The Novel Control Method for Photovoltaic Converter to the National Grid

In this paper, a novel control method for photovoltaic converter connection to the national gridis presented, so in addition to the injection control by solar arrays to the grid, this method cancompensate reactive power and harmonics in the load current. The system will be connected inparallel between the grid and load. The proposed system supplies all load power consumption(including active po...

متن کامل

Contribution to the Optical Design of A Concentrator with Uniform Flux for Photovoltaic Panels

In this investigation the aim is to broaden the space of optics for Low Concentrating Photovoltaic applications. The main target is to achieve the concentration of sunlight uniformly over a large photovoltaic receiver. To solve this problem we implemented a Monte-Carlo method and defined a new parameter in order to facilitate the analysis of irradiance distributions. The geometric parameters to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013